From large trees in the Amazon jungle to houseplants to seaweed in the ocean, green is the color that reigns over the plant kingdom. Why green, and not blue or magenta or gray? The simple answer is that although plants absorb almost all the photons in the red and blue regions of the light spectrum, they absorb only about 90 percent of the green photons. If they absorbed more, they would look black to our eyes. Plants are green because the small amount of light they reflect is that color.

Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research develop­ments and trends in mathe­matics and the physical and life sciences.

But that seems unsatisfyingly wasteful because most of the energy that the sun radiates is in the green part of the spectrum. When pressed to explain further, biologists have sometimes suggested that the green light might be too powerful for plants to use without harm, but the reason why hasn’t been clear. Even after decades of molecular research on the light-harvesting machinery in plants, scientists could not establish a detailed rationale for plants’ color.

Recently, however, in the pages of Science, scientists finally provided a more complete answer. They built a model to explain why the photosynthetic machinery of plants wastes green light. What they did not expect was that their model would also explain the colors of other photosynthetic forms of life too. Their findings point to an evolutionary principle governing light-harvesting organisms that might apply throughout the universe. They also offer a lesson that—at least sometimes—evolution cares less about making biological systems efficient than about keeping them stable.

The mystery of the color of plants is one that Nathaniel Gabor, a physicist at the University of California, Riverside, stumbled into years ago while completing his doctorate. Extrapolating from his work on light absorption by carbon nanotubes, he started thinking of what the ideal solar collector would look like, one that absorbed the peak energy from the solar spectrum. “You should have this narrow device getting the most power to green light,” he said. “And then it immediately occurred to me that plants are doing the opposite: They’re spitting out green light.”

Nathaniel Gabor, a physicist at the University of California, Riverside, and his colleagues have developed a model for light collection in photosynthetic organisms that optimizes the reduction of “noise” over efficiency.Courtesy of UC Riverside

In 2016, Gabor and his colleagues modeled the best conditions for a photoelectric cell that regulates energy flow. But to learn why plants reflect green light, Gabor and a team that included Richard Cogdell, a botanist at the University of Glasgow, looked more closely at what happens during photosynthesis as a problem in network theory.

The first step of photosynthesis happens in a light-harvesting complex, a mesh of proteins in which pigments are embedded, forming an antenna. The pigments—chlorophylls, in green plants—absorb light and transfer the energy to a reaction center, where the production of chemical energy for the cell’s use is initiated. The efficiency of this quantum mechanical first stage of photosynthesis is nearly perfect—almost all the absorbed light is converted into electrons the system can use.

But this antenna complex inside cells is constantly moving. “It’s like Jell-O,” Gabor said. “Those movements affect how the energy flows through the pigments” and bring noise and inefficiency into the system. Quick fluctuations in the intensity of light falling on plants—from changes in the amount of shade, for example—also make the input noisy. For the cell, a steady input of electrical energy coupled to a steady output of chemical energy is best: Too few electrons reaching the reaction center can cause an energy failure, while “too much energy will cause free radicals and all sorts of overcharging effects” that damage tissues, Gabor said.

Gabor and his team developed a model for the light-harvesting systems of plants and applied it to the solar spectrum measured below a canopy of leaves. Their work made it clear why what works for nanotube solar cells doesn’t work for plants: It might be highly efficient to specialize in collecting just the peak energy in green light, but that would be detrimental for plants because, when the sunlight flickered, the noise from the input signal would fluctuate too wildly for the complex to regulate the energy flow.

Illustration: Samuel Velasco/Quanta Magazine
You May Also Like

Your new iPhone Lock Screen has a BIG secret – how to unlock hidden trick

APPLE completely revamped the iPhone Lock Screen last week, giving fans more…

Nintendo Switch SOLD OUT on Amazon – where to still buy one before Christmas

TRYING to get your hands on a Nintendo Switch before Christmas? You’re…

Rolls-Royce and UK Space Agency work on nuclear-powered space engine

British luxury car and aircraft engine maker Rolls-Royce has formed an unlikely…

Why Didn’t Artificial Intelligence Save Us From Covid-19?

In late January, more than a week before Covid-19 had been given…